fractional recrystallization (4×) of the (-)- α -phenylethylamine salts from isopropyl alcohol. The less soluble salt (24%) had mp 154–157 °C and [α]²⁵_D +46° (c 1.0, CH₃CH₂OH). The mandelic acid (S)-1f was isolated as outline above for (S)-1b and recrystallized from toluene: mp 108–110 °C, [α]²⁵_D +137° (c 0.333, CH₃CH₂OH) [lit.³ mp 109–112 °C, [α]²⁵_D -144° (c 0.3, CH₃CH₂OH) for the *R* enantiomer]; 95% ee; EA max (CH₃OH) 272 nm (ϵ 340), 265 (380), 258 (340) (sh); (CH₃OH–KOH) 273 (290), 265 (350), 258 (300) (sh); CD (CH₃OH, c 0.0251) [θ]₂₇₇ ±0, [θ]₂₇₄ -470, [θ]₂₇₀ -130, [θ]₂₈₇ -450, [θ]₂₈₄ -200, [θ]₂₈₁ -210, [θ]₂₅₄ ±0; (c 0.00100) [θ]₂₈₄ ±0, [θ]₂₈₆ +1700, [θ]₂₀₆ ±0; (CH₃OH–KOH, c 0.0500) [θ]₂₈₀ ±0, [θ]₂₇₄ -670, [θ]₂₇₁ -280, [θ]₂₈₆ -470, [θ]₂₈₃ -300, [θ]₂₈₁ -340, [θ]₂₄₆ ±0, [θ]₂₄₀

(**R**)-m-Chloromandelic acid³² ((**R**)-1g): mp 103-105 °C, $[\alpha]^{23}_{D}$ -113° (c 4.40, CH₃CH₂OH) [lit.³ mp 103-105 °C, $[\alpha]^{25}_{D}$ -116° (c 4, C₂H₅OH)]; 97% ee; EA max (CH₃OH) 275 nm (ϵ 260), 267 (310), 261 (270), 253 (390) (sh); (CH₃OH-KOH) 275 (240), 267 (310), 261 (250), 254 (220); CD (CH₃OH, c 0.0358) [θ]₂₇₈ ±0, [θ]₂₇₅ +620, [θ]₂₇₂ +280, [θ]₂₈₇ +650, [θ]₂₆₄ +340, [θ]₂₆₁ +370, [θ]₂₆₅ +32 (sh), [θ]₂₅₂ ±0, [θ]₂₄₃ -1400; (CH₃OH-KOH, c 0.0358) [θ]₂₈₁ ±0, [θ]₂₇₆ +810, [θ]₂₇₃ +400, [θ]₂₆₈ +850, [θ]₂₆₄ +420, [θ]₂₆₂ +530, [θ]₂₆₅ +260 (sh), [θ]₂₄₇ ±0, [θ]₂₄₃ -830.

(R)-m-Fluoromandelic Acid ((R)-1h). The racemic acid was prepared in 28% yield from m-fluorobenzaldehyde by way of the corresponding cyanohydrin.³³ Recrystallization from benzene gave a somewhat impure (±)-1h: mp 80-85 °C [lit.⁹ mp 97 °C]. The acid was resolved by fractional crystallization of its (-)-ephedrine salt from 95% ethanol (2×). The less soluble salt (28%) had $[\alpha]^{26}_{D}$ -59° (c 4.33, CH₃OH). The mandelic acid (R)-1h was isolated as outlined above for the isolation of (S)-1b from its salt and recrystallized from benzene: mp 115–117 °C, $[\alpha]^{24}$ _D -119° (c 2.83, acetone) [lit.⁹ mp 121 °C, $[\alpha]^{25}_{578}$ -129° (c 1, acetone)]; 92% ee; ¹H NMR (300 MHz, CD₃SOCD₃) δ 5.07 (s, 1, CHOH), 6.0 (v br s, 2), 7.07 (dt, 1, J = 2.2 and 8.4 Hz, ArH), 7.24 (m, 2, ArH), 7.36 (m, 1, ArH); EA max 269 nm (\$\epsilon 980), 262 (1000), 257 (670), 251 (390), (CH₃OH-KOH) 269 (980), 263 (970), 257 (640), 252 (390); CD (CH₃OH, c 0.0325) $[\theta]_{273} \pm 0$, $[\theta]_{270} \pm 370$, $[\theta]_{287}$ +90, $[\theta]_{263}$ +320, $[\theta]_{258}$ +200 (sh), $[\theta]_{252}$ ±0, $[\theta]_{243}$ -2700, (CH₃OH-KOH, c 0.0325) $[\theta]_{275}$ ±0, $[\theta]_{270}$ +840, $[\theta]_{267}$ +410, $[\theta]_{263}$ +880, $[\theta]_{259}$ +580, $[\theta]_{257}$ +610, $[\theta]_{252}$ +280 (sh), $[\theta]_{245}$ ±0, $[\theta]_{235}$ -3000.

 (32) Purchased from Niels Clauson-Kaas A/S Chemical Research Laboratory, Rugmarken 28, DK-3520 Farum, Denmark.
 (33) Corson, B. B.; Dodge, R. A.; Harris, S. A.; Yeaw, J. S. Organic

(33) Corson, B. B.; Dodge, R. A.; Harris, S. A.; Yeaw, J. S. Organic Syntheses; Wiley: New York, 1932; Collect. Vol. I, pp 329-333. (*R*)-o-Methylmandelic acid³² ((*R*)-1i): mp 61-63 °C, $[\alpha]^{24}_{D}$ -171° (c 2.66, CH₃CH₂OH) [lit.³ mp 61-63 °C, $[\alpha]^{25}_{D}$ -175° (c 2, CH₃CH₂OH)]; 98% ee; EA max (CH₃OH) 273 nm (ϵ 280), 265 (330), 261 (300); (CH₃OH-KOH) 273 (250), 264 (310); CD (CH₃OH, c 0.0537) [θ]₂₈₀ ±0 [θ]₂₇₅ -120, [θ]₂₇₉ -20, [θ]₂₈₉ -110, [θ]₂₈₅ -20, [θ]₂₆₃ -60, [θ]₂₅₅ -20, [θ]₂₄₅ -1100; (CH₃OH-KOH, c 0.0537) [θ]₂₇₇ ±0, [θ]₂₇₆ -30,²⁹ [θ]₂₇₅ ±0, [θ]₂₇₇ +150, [θ]₂₈₉ +50, [θ]₂₈₅ +120, [θ]₂₈₃ +90, [θ]₂₅₇ +100, [θ]₂₄₇ ±0, [θ]₂₈₈ -1000.

 $\begin{array}{l} \textbf{(R)} -p - (\textbf{Aminomethyl}) \textbf{mandelic} acid^{32} ((\textbf{R}) - 3c): \mbox{mp} > 260 \\ ^{\circ}C, \ [\alpha]^{23}{}_{D} - 116^{\circ} (c \ 1.5, \ 1 \ N \ HCl) \ [lit.^{3} \ mp > 200 \ ^{\circ}C, \ [\alpha]^{25}{}_{D} - 124^{\circ} \\ (c \ 1.5, \ 1 \ N \ HCl) \]; 94\% \ ee; \ EA \ max (H_{2}O) \ 270 \ nm (\epsilon \ 160), 265 \ (250), \\ 260 \ (280), 255 \ (230); \ (H_{2}O - HCl) \ 270 \ (160), 265 \ (240), 260 \ (240), \\ 255 \ (180); \ (H_{2}O - KOH) \ 271 \ (140) \ (sh), 267 \ (200) \ (sh), 262 \ (250), \\ 256 \ (230), 253 \ (190) \ (sh); \ CD \ (H_{2}O, c \ 0.0400) \ [\theta]_{276} \pm 0, \ [\theta]_{251} + 310, \\ \ [\theta]_{268} \ + 150, \ [\theta]_{266} \ + 380, \ [\theta]_{261} \ + 230, \ [\theta]_{260} \ + 260, \ [\theta]_{253} \ + 120 \ (sh), \\ \ [\theta]_{250} \ \pm 0, \ [\theta]_{238} \ - 2100; \ (H_{2}O - HCl, \ c \ 0.0400) \ [\theta]_{274} \ \pm 0, \ [\theta]_{271} \ + 360, \\ \ [\theta]_{267} \ + 170, \ [\theta]_{264} \ + 450, \ [\theta]_{261} \ + 250, \ [\theta]_{258} \ + 290, \ [\theta]_{254} \ + 150 \ (sh), \\ \ [\theta]_{250} \ \pm 0, \ [\theta]_{249} \ - 100; \ (H_{2}O - KOH, \ c \ 0.0400) \ [\theta]_{260} \ \pm 0, \ [\theta]_{273} \ - 270, \\ \ [\theta]_{271} \ - 140, \ [\theta]_{268} \ - 210, \ [\theta]_{261} \ - 120, \ [\theta]_{259} \ - 140, \ [\theta]_{252} \ - 75, \ [\theta]_{243} \ - 390. \end{array}$

p-Methylbenzylamine hydrochloride (5a): EA max (C-H₃OH) 271 nm (ϵ 130), 266 (160), 262 (230), 255 (180), 251 (130) (sh), (CH₃OH-KOH) 273 (310), 267 (290), 264 (320), 259 (250), 252 (160) (sh).

Benzylamine hydrochloride (5b): EA max (CH₃OH) 267 nm (ϵ 120), 263 (170), 261 (170), 256 (210), 251 (150), 246 (110) (sh), 242 (72) (sh), (CH₃OH-KOH) 268 (100), 264 (140), 261 (150) (sh), 258 (190), 252 (150), 247 (110) (sh), 242 (70) (sh).

Toluene (5c): EA max (CH₃OH) 268 nm (ϵ 230), 265 (170), 262 (250), 260 (210), 255 (190), 249 (120) (sh), 243 (75) (sh).

Hydrogenolysis of (R)-m-Fluoromandelic Acid ((R)-lh). A mixture of (R)-1h, $[\alpha]^{24}$ –119° (c 2.83, acetone) (0.30 g, 1.8 mmol), potassium hydroxide (1.12 g, 19.9 mmol), 90% aqueous ethanol (50 mL), and Raney nickel (2.0 g, wet) was stirred under an atmosphere of hydrogen (680 mmHg, 25 °C). An equivalent amount of hydrogen (47 mL, 1.7 mmol) was consumed in 1.5 h, and the catalyst was removed by filtration. The filtrate was acidified (pH <2) and evaporated to about 15 mL, and water (30 mL) was added. The solution was extracted with ether (2×25) mL). The dried (MgSO₄) ethereal solution was evaporated at reduced pressure. Recrystallization of the solid residue from benzene gave (R)-mandelic acid ((R)-1a) (90 mg, 34%): mp 122-124 °C, $[\alpha]^{25}_{D}$ -139° (c 1.14, H₂O) [lit.¹⁷ $[\alpha]^{26}_{D}$ -130° (c 3.24, H₂O)]; ¹H NMR (300 MHz, CD₃SOCD₃) δ 5.02 (s, 1, CHOH), 7.30 (m, 3, ArH), 7.42 (m, 2, ArH). This ¹H NMR spectrum was different from that of (R)-1h but identical with that of (R)-1a under the same conditions of observation.

Pentacovalent Oxaphosphorane Chemistry in Organic Synthesis. 2. Total Syntheses of (\pm) -trans- and (\pm) -cis-Neocnidilides

Cynthia K. McClure* and Kang-Yeoun Jung

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716

Received August 16, 1990

Both (\pm) -trans- and (\pm) -cis-neocnidlides (1 and 2) have been synthesized via the route illustrated in Scheme III. The condensation of the $1,2\lambda^5$ -oxaphospholene **5b** with valeraldehyde produced the highly substituted phosphonates **12s** and **12a**, which were transformed via an intramolecular Wadsworth-Horner-Emmons olefination reaction to the title compounds.

The carbon analogue¹ of the Ramirez carbonyl condensation reaction forms the basis of the syntheses of both (\pm) -trans- and (\pm) -cis-neocnidilides (1 and 2). These compounds are major constituents of the volatile oil of most representatives of Apium graveleues L (Umbelliferae) and have been found to inhibit both the growth and the toxin production of mycotoxin-producing fungi.² The structure of *trans*-neocnidilide, isolated from *Cnidium* officinale, was reported by Mitsuhashi and Muramatsu in

⁽¹⁾ McClure, C. K.; Jung, K.-Y. J. Org. Chem. 1991, 56, 867.

⁽²⁾ Suzuki, H.; Tanaka, A.; Yamashita, K. Agric. Biol. Chem. 1987, 51, 3369.

EtO2C

EtO₂C

9

OEt

ÓE†

EtO₂C

1) n-BuCH

2) H₂O

1964.³ More recently, Fischer and Gijbels⁴ have isolated and reported the structure of *cis*-neocnidilide from A. graveolens L and shown it to be identical with the previously isolated isocnidilide. Both cis- and trans-neocnidilides have previously been synthesized.^{2,5}

P(OEt)2

Our route to 1 and 2 utilizes the condensation of $1,2\lambda^5$ -oxaphospholene 5 with valeraldehyde to prepare the highly functionalized phosphonates 3 and 4 (Scheme I). trans-Neocnidilide can then be produced from the syn diastereomer 3, and cis-neocnidilide from the anti diastereomer 4. Ideally, we would like the ester $(R^1 = CO_2Et)$ to be present in the starting enone 6a. However, the condensation of valeraldehyde with the model compound 8, prepared from trans-ethyl-4-oxo-2-pentenoate⁶ (7) and triethyl phosphite, has to date not produced any recognizable products due to the thermal instability of 8 (see Scheme II). The ester was successfully introduced at a later stage in the synthesis by alkylating α to the phosphonate with methyl cyanoformate.

The enone **6b** needed for the synthesis of the $1,2\lambda^5$ -oxaphospholene 5b was prepared in three steps from 2hydroxytetrahydrofuran $(10)^7$ (see Scheme III). The 1,4-diol 11a was formed via addition of vinylmagnesium

11b. Subsequent oxidation with PDC yielded the desired enone 6b. Formation of the $1,2\lambda^5$ -oxaphospholene 5b proceeded by reaction of 6b with neat triethyl phosphite. Condensation of 5b with valeraldehyde under neat conditions followed by hydrolysis produced a mixture of the keto phosphonates 12s and 12a in a ratio of 1.78:1.0. Assignment of stereochemistry was by comparison with similar compounds made previously by us via this method (the syn isomer generally has a smaller proton-proton coupling constant, $J_{2,3}$, than the anti isomer),¹ as well as by NMR spectral analysis of the acetonides 14s and 14a (vide infra). The diastereomers were separated via HPLC (semipreparative column) at this point, but could in theory be carried on as a mixture through the subsequent reactions. While Scheme III only illustrates the conversion of 12s to 1, we have converted the anti diastereomer 12a to 2 via the same reactions in approximately the same overall vield.

Attempted reduction of the carbonyl in a model compound containing a benzyl-protected C3 hydroxyl function via the modified Wolff-Kischner reaction⁸ led to intractable material. We therefore envisioned removal of the oxygen functionality at C4 (neocnidilide numbering) via a Barton radical deoxygenation procedure. Stereoselective reduction of the ketone in 12s with tetramethylammonium triacetoxyborohydride⁹ produced the anti diol 13s,¹⁰ which was subsequently protected as the acetonide to give 15s. One- and two-dimensional (COSY) proton NMR spectral analysis of the acetonide-alcohol 14s supported our structural assignments. The proton-proton coupling constant (J) between H4 and H5 was 3.0 Hz, while that between H5 and H6 was 8.5 Hz, as would be expected for equatorial-axial and equatorial-equatorial orientations of the protons in a chair conformation of the acetonide.¹¹ See the Experimental Section for more details. Ultimate conversion to the respective neocnidilide isomers also supported our stereochemical assignments in our initial condensation products 12s and 12a.

⁽³⁾ Mitsuhashi, H.; Muramatsu, T. Tetrahedron 1964, 20, 1971.
(4) Fischer, F. C.; Gijbels, J. M. Planta Med. 1987, 77.
(5) (a) Cocker, C.; Sainsbury, D. M. J. Chem. Soc., Chem. Commun.
1965, 479. (b) Tanaka, A.; Suzuki, H.; Yamashita, K. Agric. Biol. Chem.
1989, 53, 2253. (c) Beak, P.; Kempf, D. J.; Wilson, K. D. J. Am. Chem.
Soc. 1985, 107, 4745.

 ⁽⁶⁾ Bestmann, H. J.; Seng, F.; Shulz, H. Chem. Ber. 1963, 96, 465.
 (7) (a) Paul, R.; Fluchaire, M.; Collardeau, G. Bull. Soc. Chim. Fr.
 1950, 668. (b) Bergman, N. A.; Halvarsson, T. J. Org. Chem. 1988, 53, 2548.

^{(8) (}a) Hutchins, R. O.; Kacher, M.; Rua, L. J. Org. Chem. 1975, 40, 923. (b) Taylor, E. J.; Djerassi, C. J. Am. Chem. Soc. 1976, 98, 2275. (c) Marshall, J. A.; Snyder, W. R. J. Org. Chem. 1975, 40, 1656. (9) Evans, D. A.; Chapman, K. T. Tetrahedron Lett. 1986, 27, 5939.

⁽¹⁰⁾ The reduction of 13s produced a small amount (<10%) of the other alcohol diastereomer, while the reduction of 13a was completely stereoselective.

^{(11) (}a) Sohär, P. Nuclear Magnetic Resonance, Vol. II; CRC Press: Boca Raton, Fl, 1983. (b) Booth, H. Prog. NMR Spectr. 1969, 5, 149. (c) For a recent example of NMR spectral assignments in acetonides, see: Ziegler, F. E.; Cain, W. T.; Kneisley, A.; Stirchak, E. P.; Wester, R. T. J. Am. Chem. Soc. 1988, 110, 5442.

Assembly of the functionalized cyclohexene was performed at this point. Treatment of the phosphonate 15s with *n*-butyllithium at -78 °C followed by Mander's reagent,¹² methyl cyanoformate, produced the phosphono ester 16s. Removal of the silyl protecting group and subsequent Swern oxidation¹³ of the primary hydroxyl group to the aldehyde set the stage for ring formation via an intramolecular Wadsworth-Horner-Emmons olefination reaction.¹⁴ Treatment of 18s with sodium hydride in DMF at 80 °C produced the desired cyclohexene 19s in good yield.

We were able to effect deprotection of the diol and lactonization to 4-hydroxy-*trans*-neocnidilide (20s) in one step by treatment of the acetonide 19s in methanol with a catalytic amount of *p*-toluenesulfonic acid. Deoxygenation at C4 via Barton's modified procedure¹⁵ proceeded smoothly to produce *trans*-neocnidilide (1). The same sequence of reactions produced *cis*-neocnidilide (2) from 12a. Spectroscopic data for the synthetic materials 1 and 2 were identical in all respects with those reported for the isolated natural compounds.²

This straightforward route to substituted cyclohexene derivatives illustrates the synthetic utility of pentacovalent phosphorus reagents. We are presently investigating the effect of substitution on the diastereomeric ratio of the condensation products, as well as the possibility of using configurationally defined phosphorus precursors to produce enantiomerically pure synthetic targets.

Experimental Section

General. Triethyl phosphite was treated with sodium prior to distillation. THF and Et_2O were distilled from sodiumbenzophenone. CH_2Cl_2 and CH_3CN were distilled from calcium hydride. CHCl₃ was distilled from P_2O_5 under nitrogen. All reactions were carried out under a dry nitrogen or argon atmosphere in flame-dried one- or two-necked round-bottom flasks.

Proton, carbon, and phosphorus NMR spectra were obtained in CDCl₃. Carbon signals were obtained from normal ¹³C spectra and supported by an INEPT pulse sequence. ³¹P chemical shifts are reported in ppm downfield from H₃PO₄. All two-dimensional spectra were obtained in absolute value mode and were multiplied by a sine-bell apodization function prior to Fourier transformation. For COSY¹⁶ data, the matrix consisted of 256 t_1 increments containing 1K complex points each and was zero-filled to 512 real points in both dimensions. The sweepwidths were 1748 Hz in both dimensions, with a relaxation delay of 3 s. A total of 32 scans per t_1 value were recorded. 2D J-resolved spectra¹⁷ were acquired, using sweepwidths of 2000 Hz and 62.5 Hz (64 t_1 values) in the chemical shift (f_2) and J-coupling (f_1) dimensions, respectively. The matrix was zero-filled to 1K by 128 real data points. A total of 54 transients per t_1 value were recorded. Melting points are

 ⁽¹²⁾ Mander, L. N.; Sethi, P. Tetrahedron Lett. 1983, 24, 5425.
 (13) Mancuso, A. J.; Huang, S. L.; Swern, D. J. J. Org. Chem. 1978, 43, 2480.

⁽¹⁴⁾ For recent examples of the intramolecular Horner-Emmons ole-fination reaction, see: (a) Nagarajan, M.; Rao, Y. K. Y. J. Org. Chem. 1989, 54, 5678. (b) Isoe, S.; Katsumra, S.; Kimura, A. Tetrahedron 1989, 45, 1337. (c) Lin, C.-H.; Aristoff, P. A.; Johnson, P. D.; McGrath, J. P.; Timko, J. M.; Robert, A. J. Org. Chem. 1987, 52, 5594. (d) Wiemer, D. F.; Sampson, P.; Roussis, V.; Drtina, G. J.; Koerwitz, F. L. J. Org. Chem. 1986, 51, 2525. (e) Villieras, J.; Rambaud, M. Tetrahedron Lett. 1986, 27, 1577. (f) Snider, B.; Phillips, G. B. J. Org. Chem. 1983, 48, 3685. (g) Thomas, R.; Boutagu, J. Chem. Rev. 1974, 74, 87. (15) (a) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin

^{(15) (}a) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. I 1975, 1574. (b) Barton, D. H. R.; Jazzberenyi, J. C. Tetrahedron Lett. 1979, 20, 2619. (c) Staab, H. A. Angew. Chem. 1961, 73, 148. (d) For a review of radical deoxygenations, see: Hartwig, W. Tetrahedron 1983, 39, 2609.

⁽¹⁶⁾ Bax, A.; Freeman, R. J. Magn. Reson. 1981, 44, 542.

⁽¹⁷⁾ Aue, W. P.; Karhan, J.; Ernst, R. R. J. Chem. Phys. 1976, 64, 4226.

uncorrected. Column chromatography was performed on Kiesel Gel 60 PF₂₅₄, using a step gradient of CH₃OH in CH₂Cl₂. R_f values indicated refer to thin-layer chromatography on Analtech 2.5 \times 10 cm, 250 M analytical plates coated with silica gel GF. High pressure liquid chromatography was done on a Rainin Dynamax-60A semipreparative silica gel column.

5-Hexene-1,4-diol (11a). To a solution of vinylmagnesium bromide in THF (130 mL, 0.72 M, 0.94 mmol) at rt was added a solution of butyrolactol⁷ (10) (5.5 g, 62.5 mmol) in 63 mL of THF (exothermic). After being stirred for 14 h, the reaction was quenched slowly with 150 mL of 0.2 M HCl. The organic layer was separated, and the aqueous layer was extracted with Et₂O (6 × 50 mL). The resulting crude oil was purified via column chromatography on 100 g of silica gel with 20% (200 mL), 30% (200 mL), and 50% (800 mL) EtOAc/petroleum ether. Concentration in vacuo gave 5.4 g of 11a as a clear oil (47 mmol, 75% yield): $R_{\rm c}$ (70% EtOAc/petroleum ether) = 0.38; ¹H NMR 5.95-5.80 (1 H, m), 5.31-5.05 (2 H, m), 4.15 (1 H, m), 3.65 (2 H, m), 3.05 (2 H, bs), 1.65 (4 H, m); ¹³C NMR 141.0, 114.6, 72.8, 62.7, 34.1, 28.7; IR: 3325, 2937, 2875, 1643, 1425, 1056, 993 cm⁻¹; exact mass calcd for C₆H₁₂O₂ (M - H₂O)⁺ 98.0729, found 98.0723.

6-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-1-hexen-3-ol (11b). To 11a (8.1 g, 69.8 mmol) in DMF (70 mL) under argon and at -5 °C were added imidazole (5.7 g, 84.0 mmol) and TBDMSCl (10.5 g, 69.8 mmol). After being stirred for 15 min at -5 °C, the reaction mixture was diluted with 200 mL of Et₂O and 200 mL of distilled H₂O. Aqueous workup yielded 15.6 g of an oil. Purification via column chromatography on silica gel (500 mL of petroleum ether, then 700 mL of 3% EtOAc/petroleum ether) yielded 11b (13.7 g, 85% yield) as an oil, along with diprotected starting material (0.8 g): $R_f(20\% \text{ EtOAc/petroleum})$ ether) = 0.58; ¹H NMR 5.92-5.78 (1 H, m), 5.25-5.01 (2 H, m), 4.08 (1 H, m), 3.65 (2 H, t, J = 5.8 Hz), 2.88 (1 H, bs), 1.58 (4 H, m), 0.86 (9 H, s), 0.02 (6 H, s); ¹³C NMR 141.3, 114.3, 72.6, 63.3, 34.3, 28.7, 25.9, 18.3, -5.4; IR 3377, 2945, 1641, 1473, 1106, 989 835 cm⁻¹; exact mass calcd for $C_{12}H_{28}O_2Si (M + 1)^+ 230.1695$, found 231.1773.

6-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-1-hexen-3-one (**6b**). To 11b (10 g, 43.5 mmol) in CH₂Cl₂ (1000 mL) under argon and at 0 °C were added PDC (32.7 g, 87.0 mmol) and Celite 545 (327 g). The reaction mixture was allowed to stir for 10 min at 0 °C and 26 h at rt. Dilution with 300 mL of Et₂O, filtration through a short column of Celite, and purification via column chromatography on 100 g of silica gel (3% EtOAc/petroleum ether) yielded **6b** as a clear oil (8.5 g, 86% yield): $R_f(20\%$ Et-OAc/petroleum ether) = 0.83; ¹H NMR 6.32 (1 H, dd, J = 17.7, 10.1 Hz), 6.18 (1 H, dd, J = 17.7, 1.7 Hz), 5.78 (1 H, dd, J = 10.1, 1.7 Hz), 3.60 (2 H, t, J = 6.1 Hz), 2.63 (2 H, t, J = 7.3 Hz), 1.79 (2 H, quin, J = 7.3 Hz), 0.85 (9 H, s), 0.01 (6 H, s); ¹³C NMR 194.4, 136.7, 127.6, 62.1, 35.8, 27.0, 25.9, 18;2, -5.4; IR 3377, 2959, 2887, 1703, 1683, 1402, 1094 cm⁻¹; exact mass calcd for C₁₂H₂₄O₂Si (M - C₄H₉)⁺ 171.0841, found 171.0852.

2,2.7 Triethoxy-2,3-dihydro-5-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]propyl]-1,2\lambda^5-oxaphospholene (5b). A flame-dried, 25-mL flask under argon was charged with enone 6b (0.5 g, 2.19 mmol) and P(OEt)₃ (0.5 mL, 2.85 mmol). The reaction mixture was allowed to stir for 52 h at 40 °C. The crude product was purified by bulb-to-bulb distillation (80 °C, 0.05 mmHg) to give 5b as a clear oil (553 mg, 69%): ¹H NMR 4.58-4.39 (1 H, dm, J_{H-P} = 46.8 Hz), 3.85 (6 H, m), 3.59 (2 H, t, J = 6.4 Hz), 2.55-2.46 (2 H, dm, J_{H-P} = 18.7 Hz), 2.12 (2 H, t, J = 7.7 Hz), 1.71 (2 H, m), 1.25 (2 H, m), 1.12 (9 H, t, J = 7.0 Hz), 0.87 (9 H, s), 0.02 (6 H, s); ¹³C NMR 154.8 (d, J_{P-C} = 15.4 Hz), 89.7 (d, J_{P-C} = 5.9 Hz), 62.6, 61.9 (d, J_{P-C} = 10.3 Hz), 29.7, 27.6, 28.8 (d, J_{P-C} = 168.2 Hz), 25.8, 18.2, 16.5 (d, J_{P-C} = 7.3 Hz), -5.4; IR 2968, 1676, 1458, 1317, 1186, 1086, 1053, 968 cm⁻¹.

Diethyl $(2R^*, 3S^*)$ -[2-[4-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-1-oxobutyl]-3-hydroxyheptyl]phosphonate (12s) $and Diethyl <math>(2R^*, 3R^*)$ -[2-[4-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-1-oxobutyl]-3-hydroxyheptyl]phosphonate(12a). To the oxaphospholene 5b (400 mg, 1.02 mmol) underargon was added freshly distilled valeraldehyde (0.4 mL, 3.76mmol). The reaction was followed by ¹H NMR. After 38 h atrt, the reaction was stirred with distilled water (20 equiv) for 14h. This solution was extracted with CH₂Cl₂ (5 × 10 mL), dried(MgSO₄), and concentrated in vacuo. The crude products were purified via column chromatography on 30 g of silica gel with CH₂Cl₂ (100 mL), 0.5% CH₃OH/CH₂Cl₂ (200 mL), and 1% CH_3OH/CH_2Cl_2 (500 mL) to give an oil as a mixture of the diastereomers 12s and 12a (394 mg, 0.87 mmol, 85% yield). HPLC separation (2% CH₃OH/CH₂Cl₂) yielded a syn:anti ratio (12s:12a) of 1.78:1.0 by weight. For 12s (syn isomer): R_{f} (5% MeOH/ CH₂Cl₂) = 0.48; ¹H NMR 4.01 (4 H, m), 3.63 (1 H, m, H3, $J_{2,3}$ = 3.4 Hz from decoupling studies), 3.54 (2 H, t, J = 6.1 Hz), 2.87 (1 H, m, H2), 2.61 (2 H, m), 2.23-1.82 (2 H, m), 1.68 (2 H, m), 1.40–1.21 (6 H, m), 1.15 (6 H, td, J = 7.0, 3.0 Hz), 0.82 (12 H, bs), -0.03 (6 H, s); ¹³C NMR 213.1, 73.2 (d, $J_{P-C} = 12.6$ Hz), 62.1, 61.9 (d, $J_{P-C} = 6.7$ Hz), 61.8 (d, $J_{P-C} = 6.5$ Hz), 50.9 (d, $J_{P-C} = 3.1$ Hz), 41.1, 34.5, 28.1, 26.3, 25.9, 24.6 (d, $J_{P-C} = 142.5$ Hz), 22.5, 18.3, 16.3 (d, $J_{P-C} = 5.9$ Hz), 13.9, -5.4; ³¹P NMR 31.9 ppm; IR 3331, 2962, 1713, 1235, 1051, 1030, 962; exact mass calcd for $C_{21}H_{45}O_{6}PSi$ $(M - C_{4}H_{9})^{+}$ 395.2017, found 395.2023. For 12a (anti isomer): $R_{f}(5\% \text{ MeOH/CH}_{2}\text{Cl}_{2}) = 0.52$; ¹H NMR 4.07 (4 H, m), 3.68 (1 H, m, H3, $J_{2,3} = 4.7$ Hz from decoupling studies), 3.60 (2 H, t, J = 6.2 Hz), 3.05 (1 H, m, H2), 2.66 (2 H, td, J = 7.3, 2.6 Hz), 2.25–1.61 (4 H, m), 1.55–1.12 (6 H, m), 1.25 (6 H, td, J = 7.0, 1.0 Hz), 0.85 (12 H, bs), 0.01 (6 H, s); ¹³C NMR 212.1, 71.5 (d, J_{P-C} $\begin{array}{l} \text{112,9 Hz}, 630 (12 11, 56), 631 (6 11, 57), 6 11 (14, 57), 6 11 (14, 57), 6 (1,$ 31.2 ppm; IR 3331, 2962, 1713, 1235, 1051, 1030, 962 cm⁻¹; exact mass calcd for $C_{21}H_{45}O_6PSi (M - C_4H_9)^+$ 395.2017; found 395.2023.

Diethyl $(2R^*, 3S^*)$ -[2-[4-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-1(S*)-hydroxybutyl]-3-hydroxyheptyl]**phosphonate** (13s). $Me_4NBH(OAc)_3$ (6.7 g, 25.5 mmol) was dissolved in a mixture of HOAc and CH_3CN (18 mL:18 mL) and cooled to 5 °C under argon. To this mixture was added a solution of 12s (2.2 g, 5.1 mmol) in CH₃CN (5.0 mL). After 30 min at -5 °C, the reaction was allowed to stir for 16 h at rt and then quenched with 70 mL of 0.5 N sodium potassium tartrate. This mixture was stirred for 1 h and extracted with CH_2Cl_2 (5 × 50 mL). The combined organic extracts were washed with 50 mL of saturated NaHCO₃ and dried (anhyd Na₂SO₄). The crude product was purified via column chromatography (100 g of silica gel, 1.5% MeOH/CH₂Cl₂) to give 13s (2.14 g, 92% yield): $R_{\rm f}$ (5% MeOH/CH₂Cl₂) = 0.42; ¹H NMR 4.06 (4 H, m), 3.95–3.52 (4 H, m), 2.18-1.15 (13 H, m), 1.30 (6 H, t, J = 7.1 Hz), 0.89 (12 H, bs), 0.06 (6 H, s); ¹³C NMR 74.1 (d, $J_{P-C} = 3.9$ Hz), 70.4 (d, $J_{P-C} = 12.3$ Hz), 63.6, 61.6, (d, $J_{P-C} = 2.7$ Hz), 6.15 (d, $J_{P-C} = 2.1$ Hz), 42.9 (d, J_{P-C} = 2.6 Hz), 34.9, 32.8, 29.7, 28.2, 26.9 (d, J_{P-C} = 142.4 Hz), 25.8, 22.7, 18.2, 16.3 (d, J_{P-C} = 6.1 Hz), 14.0, -5.5; ³¹P NMR 35.9 ppm; IR 3367, 2931, 1251, 1100, 1054, 1033, 962 cm⁻¹; exact mass calcd for $C_{21}H_{47}O_6PSi$ (M – C_4H_9)⁺ 397.2029, found 397.2173.

Diethyl (4S*,5R*,6S*)-[[4-Butyl-6-[3-[[1,1-dimethylethyl)dimethylsilyl]oxy]propyl]-2,2-dimethyl-1,3-dioxan-5yl]methyl]phosphonate (15s). To a solution of 13s (200 mg, 0.44 mmol) in CH₂Cl₂ (4.4 mL) were added 0.44 mL of 2,2-dimethoxypropane and a catalytic amount of p-TsOH (10 mg) under argon. The reaction mixture was allowed to stir overnight at rt and quenched with 6 mL of distilled H_2O . The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (3 \times 20 mL). The crude product was purified via column chromatography (10 g of silica gel, 1.5% MeOH/CH₂Cl₂) to give the acetonide that has lost the silvl protecting group 14s (94 mg, 57% yield) as well as triol (45 mg, 0.13 mmol) as oils. The triol was converted to the acetonide (39 mg, 77% yield) via this same method. 14s: $R_{f}(5\% \text{ MeOH/CH}_{2}Cl_{2}) = 0.45$; ¹H NMR 4.11 (4 Herein an interval in the second state of the second state in the second state in the second state in the second state is a second state in the second state in the second state in the second state in the second state is a second state in the second state is a second state in the Hz); ¹³C NMR 99.3, 74.2 (d, $J_{P-C} = 5.1$ Hz), 74.0 (d, $J_{P-C} = 7.3$ Hz), 62.3, 61.8 (d, $J_{P-C} = 6.3$ Hz), 61.4 (d, $J_{P-C} = 6.9$ Hz), 35.4, 32.5, 29.8, 29.5, 28.8, 27.7, 22.6, 19.5, 18.1 (d, $J_{P-C} = 143.8$ Hz), 16.4 (d, $J_{P-C} = 4.0$ Hz), 16.3 (d, $J_{P-C} = 4.3$ Hz), 14.0; ³¹P NMR 34.8 ppm; IR 3431, 2931, 1381, 1231, 1056, 1025, 962, 838 cm⁻¹; exact mass calcd for $C_{18}H_{37}O_6P$ (M - CH₃)⁺ 365.2060, found 365.2084. Proton-proton decoupling studies were performed by irradiation at 1.85 and 1.38 ppm. Assignments of protons H4 and H6 were substantiated by COSY spectra. The $J_{4,5}$ and $J_{5,6}$ values indicate that the conformation of the acetonide six-membered ring is a chair, with H4 equatorial and H6 axial. It has also been observed that equatorial protons have a larger chemical shift value

than axial protons in variously substituted cyclohexanes and six-membered heterocycles.¹¹

Triol: $R_{1}(5\% \text{ MeOH}/\text{CH}_2\text{Cl}_2) = 0.27$; ¹H NMR 4.31 (1 H, bs), 4.11–3.89 (7 H, m), 3.83–3.25 (3 H, m), 2.31–1.19 (13 H, m), 1.33 (6 H, td, J = 7.05, 1.27), 0.92 (3 H, t, J = 6.9 Hz); ¹³C NMR 73.9 (d, $J_{P-C} = 4.1$ Hz), 7.07 (d, $J_{P-C} = 12.4$ Hz), 62.6, 61.9 (d, $J_{P-C} = 6.7$ Hz), 61.7 (d, $J_{P-C} = 6.9$ Hz), 41.7 (d, $J_{P-C} = 2.8$ Hz), 34.5, 32.1, 29.8, 28.5, 22.6, 21.5 (d, $J_{P-C} = 139.3$ Hz), 16.4 (d, $J_{P-C} = 5.9$ Hz), 14.0; ³¹P NMR 34.3 ppm; IR 3362, 2937, 1231, 1056, 1031, 963 cm⁻¹.

The TBS group was reintroduced by reaction of the acetonide-alcohol 14s (240 mg, 0.63 mmol) from above with TBSOTF (0.29 mL, 1.26 mmol) and lutidine (0.15 mL, 1.26 mmol) in CH₂Cl₂ (6 mL) at -78 °C. After being stirred for 10 h at -78 °C, the reaction mixture was warmed to rt, quenched with pH 7 buffer solution (2.0 mL), and extracted with CH_2Cl_2 (3 × 10 mL). The crude product was purified by column chromatography (10 g of silica gel, 1% MeOH/CH₂Cl₂) to give pure product 15s (255 mg, 82% yield) as an oil: $R_{f}(5\% \text{ MeOH/CH}_{2}\text{Cl}_{2}) = 0.77$; ¹H NMR 4.01 (4 H, m), 3.77 (2 H, m), 3.56 (2 H, t, J = 6.6 Hz), 1.87-1.05(19 H, m), 1.28 (3 H, s), 1.25 (3 H, s), 0.83 (12 H, s), -0.02 (6 H, s); ¹³C NMR 99.0, 74.0 (d, $J_{P-C} = 6.2$ Hz), 73.8 (d, $J_{P-C} = 6.2$ Hz), 63.0, 61.2 (d, $J_{P-C} = 5.4$ Hz), 35.8, 32.5, 29.8, 29.0, 28.8, 27.7, 25.9, 22.5, 19.4, 18.3, 18.2 (d, $J_{P-C} = 143.6$ Hz), 16.3 (d, $J_{P-C} = 6.1$ Hz), 13.9, -5.5; ³¹P NMR 34.7 ppm; IR 2955, 2860, 1464, 1381, 1254, 1093, 1059, 1029, 961, 834 cm⁻¹; exact mass calcd for $C_{24}H_{51}O_6PSi$ (M - CH₃)⁺ 479.2955, found 479.2927.

Diethyl (4S*,5R*,6S*)-[[4-Butyl-6-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]propyl]-2,2-dimethyl-1,3-dioxan-5yl]carbomethoxymethyl]phosphonate (16s). To 15s (311 mg, 0.63 mmol) in THF (12 mL) at -78 °C under argon was added 1.6 M of n-BuLi (1.6 mL, 2.50 mmol). After 75 min at -78 °C, a solution of NCCO₂Me (0.2 mL, 2.50 mmol) in THF (3 mL) was added. The reaction mixture was stirred for 2 h at -78 °C, warmed to -10 °C, and quenched with 10 mL of distilled H₂O. Extraction with CH_2Cl_2 and purification via column chromatography (10 g of silica gel, 1% MeOH/CH₂Cl₂) yielded the oil 16s (241 mg, 85% yield based on reacted 15s) as a mixture of diastereomers at the ester group and unreacted 15s (60 mg). 16s: $R_f(5\% \text{ MeOH})$ $CH_2Cl_2 = 0.79$; ¹H NMR (major) 4.08 (4 H, m), 3.82 (2 H, m), 3.67 (3 H, s), 3.55 (2 H, m), 3.19 (1 H, bd, $J_{P-H} = 24.8$ Hz), 2.13-1.11(17 H, m), 1.34 (3 H, s), 1.25 (3 H, s), 0.83 (12 H, s), -0.01 (6 H, s); ¹³C NMR 169.4, 99.5, 74.1 (d, $J_{P-C} = 6.4$ Hz), 73.9 (d, $J_{P-C} = 6.3$ Hz), 62.6, 61.3 (d, $J_{P-C} = 5.4$ Hz), 52.2, 41.1, 40.8 (d, $J_{P-C} = 6.3$ Hz), 62.6, 61.3 (d, $J_{P-C} = 5.4$ Hz), 52.2, 41.1, 40.8 (d, $J_{P-C} = 5.4$ Hz), 52.2, 41.1, 40.8 (d, $J_{P-C} = 5.4$ Hz), 52.2, 52 138.8 Hz), 35.9, 29.3, 29.1, 28.9, 27.7, 25.9, 22.5, 19.3, 18.3, 16.3 $(d, J_{P-C} = 4.1 \text{ Hz}), 14.1, -5.3; {}^{31}P \text{ NMR} (major) 34.8 \text{ ppm}, (minor)$ 34.6 ppm; IR 2956, 2857, 1738, 1469, 1380, 1254, 1100, 1053, 1027, 963, 837 cm⁻¹; exact mass calcd for $C_{26}H_{53}O_8PSi$ (M - CH₃)⁺ 537.3010, found 537.3051.

Diethyl $(4S^{*}, 5R^{*}, 6S^{*})$ -[[4-Butyl-6-(3-hydroxypropyl)-2,2-dimethyl-1,3-dioxan-5-yl]carbomethoxymethyl]phosphonate (17s). To a solution of 16s (105 mg, 0.19 mmol) in THF (1.9 mL) at rt was added n-Bu₄NF (90 mg, 0.29 mmol). After being stirred for 2 h, the reaction mixture was quenched with 5 mL of NH₄Cl and extracted with CH_2Cl_2 (5 × 15 mL). The crude product was purified via chromatography on 5 g of silica gel with 50 mL of 0.5% $MeOH/CH_2Cl_2$ and 200 mL of 1.0% MeOH/CH₂Cl₂ to give a clear oil (81 mg, 98% yield): $R_{f}(5\%)$ MeOH/CH₂Cl₂) = 0.44; ¹H NMR (major) 4.59 (1 H, m), 4.15 (4 H, m), 3.94 (1 H, m), 3.75 (2 H, s), 3.61 (2 H, m), 3.16 (1 H, dd, J = 23.9, 2.5 Hz, 2.07 (1 H, m), 2.05–1.15 (22 H, m), 0.92 (3H, t, J = 7.0 Hz); ¹³C NMR: 169.0, 100.9, 69.1 (d, $J_{P-C} = 16.8$ Hz), 67.1, 63.2 (d, $J_{P-C} = 6.9 \text{ Hz}$), 62.6 (d, $J_{P-C} = 6.9 \text{ Hz}$), 60.8, 52.5, 45.7 (d, $J_{P-C} = 4.2 \text{ Hz}$), 42.5 (d, $J_{P-C} = 138.9 \text{ Hz}$), 32.3, 30.0, 29.0, 28.3, 25.6, 23.5, 22.6, 16.4 (d, $J_{P-C} = 2.4 \text{ Hz}$), 16.3 (d, $J_{P-C} = 3.1 \text{ Hz}$), 16.3 (d, $J_{P-C} = 3.1 \text{ Hz}$) Hz), 13.9; ³¹P (major) 33.2 ppm, (minor) 33.0 ppm; IR: 3431, 2943, 1737, 1381, 1250, 1150, 1056, 1031, 962 cm⁻¹; exact mass calcd for $C_{20}H_{39}O_8P$ (M - CH₃)⁺ 423.2146, found 423.2133.

Diethyl (4S*,5R*,6S*)-[[4-Butyl-6-(3-propanoyl)-2,2-dimethyl-1,3-dioxan-5-yl]carbomethoxymethyl]phosphonate (18s). To a cold (-78 °C) solution of CH₂Cl₂ (2.0 mL) and oxalyl chloride (192 mL, 2.23 mmol) was added a solution of DMSO (0.31 mL, 4.45 mmol) in CH₂Cl₂ (4 mL). The reaction mixture was stirred for 30 min at -78 °C. A solution of 17s (487 mg, 1.11 mmol) in CH₂Cl₂ (11 mL) was added quickly, and the mixture was stirred for 1 h at -78 °C. Et₃N (1.54 mL, 11.1 mmol) was added, and the mixture was stirred for 65 min at -78 °C. After being warmed to rt, the reaction mixture was quenched with 6 mL of distilled H₂O and extracted with CH₂Cl₂ (3 × 30 mL). The crude product was purified via column chromatography (10 g of silica gel, 1% MeOH/CH₂Cl₂) to give pure product as an oil (371 mg, 76% yield): R_f (5% MeOH/CH₂Cl₂) = 0.72; ¹H NMR 9.76 (1 H, t, J = 1.5 Hz), 4.41 (1 H, m), 4.11 (4 H, m), 3.89 (1 H, m), 3.73 (3 H, s), 3.24 (1 H, dd, J = 24.1, 2.6 Hz), 2.51 (2 H, m), 2.38-1:02 (21 H, m), 0.91 (3 H, t, J = 7.1 Hz); ¹³C NMR 201.8, 170.1, 100.8, 69.1 (d, $J_{P-C} = 15.7$ Hz), 68.4, 63.2 (d, $J_{P-C} = 6.9$ Hz), 62.6 (d, $J_{P-C} = 7.1$ Hz), 52.5, 45.1 (d, $J_{P-C} = 4.2$ Hz), 42.5 (d, $J_{P-C} = 138.8$ Hz), 41.0, 36.1, 28.3, 25.5, 23.9, 23.3, 22.7, 16.4 (d, $J_{P-C} = 2.6$ Hz), 16.3 (d, $J_{P-C} = 3.2$ Hz), 13.9; ³¹P NMR (major) 33.7 ppm, (minor) 33.5 ppm; IR 2960, 2727, 1761, 1734, 1460, 1379, 1249, 1096, 1051, 1029, 966 cm⁻¹; exact mass calcd for C₂₀H₃₇O₈P (M - CH₃)⁺ 421.1989, found 421.1973.

Methyl (4S*,4aR*,8aS*)-4-Butyl-4a,7,8,8a-tetrahydro-2,2-dimethyl-4H-1,3-benzodioxin-5-carboxylate (19s). To a hot (80 °C) solution of 18s (117 mg, 0.27 mmol) in DME (27 mL) under argon was added NaH (80% mineral oil dispersion, 33 mg, 1.08 mmol). After being stirred at 80 °C for 40 min, the reaction mixture was slowly poured into ice-water and extracted with Et₂O. Purification via column chromatography (5% EtOAc/petroleum ether) gave the desired product 19s (60 mg, 79% yield) as a mixture of isomers at C8a: $R_f(20\% \text{ EtOAc/petroleum ether}) =$ 0.75; ¹H NMR (major) 6.89 (1 H, m), 4.57 (1 H, m), 3.98 (1 H, m), 3.72 (3 H, s), 2.96 (1 H, m), 2.34 (2 H, m), 1.93–0.91 (8 H, m), 1.47 (3 H, s), 1.46 (3 H, s), 0.88 (3 H, d, J = 7.1 Hz), (minor) 6.78(1 H, m), 4.27 (1 H, m), 3.97 (1 H, m), 3.71 (3 H, s), 2.73 (1 H, m), 2.42 (2 H, m), 1.93-0.91 (8 H, m), 1.47 (3 H, s), 1.46 (3 H, s), 0.88 (3 H, t, J = 7.1 Hz); ¹³C NMR (major) 167.3, 140.6, 129.5, 99.0, 72.9, 66.4, 51.3, 42.6, 30.1, 29.9, 28.3, 27.5, 26.9, 24.7, 22.5, 14.0, (minor) 169.4, 139.8, 130.0, 97.9, 71.9, 67.0, 37.4, 33.3, 30.1, 29.7, 28.8, 27.7, 27.0, 21.4, 21.3, 13.8; IR 2956, 1721, 1640, 1433, 1379, 1258, 1217, 1190, 1092, 1042 cm⁻¹; exact mass calcd for C₁₆H₂₆O₄ (M - CH₃)⁺ 267.1595, found 267.1592.

(3S*,3aR*,4S*)-3-Butyl-3a,4,5,6-tetrahydro-4-hydroxy-1-(3H)-isobenzofuranone (4-Hydroxy-*trans*-neocnidilide) (20s). To a solution of 19s (100 mg, 0.35 mmol) in MeOH (3.5 mL) at rt was added a catalytic amount of p-TsOH (10 mg). After being stirred for 1 h, the reaction was quenched with 10 mL of distilled H₂O and extracted with Et₂O. The crude product was purified via column chromatography (silica gel, 20% Et₂O/petroleum ether) to yield an oil (65 mg, 87% yield) as a mixture of isomers at C₄: $R_f(50\% \text{ EtOAc/petroleum ether}) = 0.54$; ¹H NMR (major) 6.72 (1 H, q, J = 3.3 Hz), 4.25 (1 H, td, J = 8.9, 2.7 Hz), 3.68 (1 H, m), 2.81 (1 H, bs), 2.70-1.15 (11 H, m), 0.91 (3 H, t, J = 7.1 Hz), (minor) 6.85 (1 H, q, J = 3.3 Hz), 4.51 (1 H, q)m), 3.68 (1 H, m), 2.81-1.15 (12 H, m), 0.92 (3 H, t, J = 6.9 Hz); ¹³C NMR (major) 169.8, 135.0, 128.9, 85.5, 70.8, 49.7, 35.5, 31.0, 27.7, 26.0, 22.4, 13.8, (minor) 170.1, 135.4, 127.3, 80.3, 62.3, 47.6, 34.5, 30.9, 27.4, 25.9, 20.8, 13.8; IR 3425, 3031, 2962, 1744, 1681, 1463, 1337, 1250, 1106, 1090, 1044 cm⁻¹; exact mass for $C_{12}H_{18}O_3$ (M)⁺ 210.1254, found 210.1246.

trans-Neocnidilide (1). To a solution of 20s (31 mg, 0.148 mmol) in CH₂Cl₂ (0.8 mL) at rt and under argon atmosphere was added 1,1'-thiocarbonyldiimidazole (53 mg, 0.295 mmol). After being stirred at rt for 22 h, the reaction was concentrated in vacuo and diluted with 5 mL of freshly distilled toluene. To this solution were added AIBN (20 mg, 0.122 mmol) and Bu₃SnH (59 µL, 0.218 mmol). After being refluxed for 4 h at 120 °C, the reaction mixture was poured into a mixture of Et₂O (5.0 mL) and 0.5 N HCl (5.0 mL). The aqueous layer was neutralized with 20% aq KOH solution and thoroughly extracted with Et_2O (5 × 10 mL). Crude product was purified by column chromatography (10% Et₂O/ petroleum ether) to give pure trans-neocnidilide as an oil (18.8 mg, 68% yield): $R_{f}(20\% \text{ EtOAc/petroleum}) = 0.74$; ¹H NMR 6.75 (1 H, q, J = 3.2 Hz), 3.96 (1 H, m), 2.56-1.05 (13 H, m), 0.90 (3 H)H, t, J = 7.1 Hz); ¹³C NMR 170.2, 135.1, 131.3, 85.8, 43.1, 34.3, 27.5, 25.4, 25.0, 22.5, 20.7, 13.8; IR 2934, 2867, 1764, 1680, 1461, 1245, 1184, 1025, 974 cm⁻¹; exact mass calcd for C₁₂H₁₈O₂ (M)⁺ 194.1305, found 194.1322.

Diethyl $(2R^*, 3R^*)$ -[2-[4-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-1(R^*)-hydroxybutyl]-3-hydroxyheptyl]phosphonate (13a). Diol 13a (570 mg, 94% yield), was prepared from 12a (600 mg, 1.33 mmol) by following the same procedure as for the preparation of 13s. 13a: $R_{1}(5\% \text{ MeOH/CH}_{2}\text{Cl}_{2}) = 0.42$; ¹H NMR 4.05 (4 H, m), 3.94 (1 H, m), 3.79 (1 H, m), 3.63 (2 H, t, J = 5.7 Hz), 2.30–1.29 (13 H, m), 1.29 (6 H, t, J = 7.1 Hz), 0.89 (12 H, bs), 0.03 (6 H, s); ¹³C NMR 73.8 (d, $J_{P-C} = 3.6$ Hz), 70.4 (d, $J_{P-C} = 12.9$ Hz), 63.3, 61.7 (d, $J_{P-C} = 6.3$ Hz), 61.6 (d, $J_{P-C} = 6.7$ Hz), 41.3 (d, $J_{P-C} = 2.9$ Hz), 34.6, 31.9, 29.5, 28.6, 25.9, 22.6, 21.4 (d, $J_{P-C} = 140.9$ Hz), 18.3, 16.4 (d, $J_{P-C} = 5.9$ Hz), 14.0, -5.4; ³¹P NMR 34.8 ppm; IR 3363, 2956, 2931, 1256, 1100, 1057, 1031, 963 cm⁻¹; exact mass calcd for C₂₁H₄₇O₆PSi (M - C₄H₉)⁺ 397.2029, found 397.2173.

Diethyl (4R*,5R*,6R*)-[[4-Butyl-6-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]propyl]-2,2-dimethyl-1,3-dioxan-5yl]methyl]phosphonate (15a). Acetonide-alcohol 14a (87 mg, 85% yield) was prepared from 13a (120 mg, 0.26 mmol) by following the same procedure as for the preparation of 14s. 14a: $R_{f}(5\% \text{ MeOH/CH}_{2}\text{Cl}_{2}) = 0.45$; ¹H NMR 4.09 (4 H, m), 3.85 (1 H, m, H6, $J_{5,6} = 3.5$ Hz from decoupling studies), 3.65 (2 H, t, J = 5.9 Hz), 3.58 (1 H, m, H4, $J_{4,5} = 5.4$ Hz from decoupling studies), 2.68 (1 H, bs), 2.05–1.21 (25 H, m), 0.91 (3 H, t, J = 6.9 Hz); ¹³C NMR 100.2, 74.6 (d, $J_{P-C} = 6.4$ Hz), 68.8 (d, $J_{P-C} = 12.8$ Hz), 62.3, 61.6 (d, $J_{P-C} = 7.7$ Hz), 61.5 (d, $J_{P-C} = 7.4$ Hz), 39.6, 34.8, 29.5, 28.2, 27.7, 25.5, 24.7, 23.9 (d, $J_{P-C} = 142.7$ Hz), 22.6, 16.4 (d, $J_{P-C} = 6.0$ Hz), 14.0; ³¹P NMR 32.7 ppm; IR 3431, 2931, 1381, 1231, 1056, 1025, 962, 838 cm⁻¹; exact mass calcd for C₁₈-H₃₇O₆P (M - CH₃)⁺ 365.2060, found 365.2084. Proton-proton decoupling studies were performed by irradiation at 1.50 ppm. Assignments of protons H4 and H6 were substantiated by COSY and 2D J-resolved spectra. The $J_{4,5}$ and $J_{5,6}$ values indicate that the conformation of the acetonide six-membered ring is a chair, with H4 axial and H6 equatorial. It is also known that equatorial protons have a larger chemical shift value than axial protons in variously substituted cyclohexanes and six-membered heterocycles.11

To a solution of the acetonide–alcohol from above (1.65 g, 4.34 mmol) in DMF (4.5 mL) at 0 °C was added imidazole (0.36 g, 5.21 mmol). After 5 min at 0 °C, TBDMSCl (0.72 g, 4.78 mmol) was added. The reaction mixture was warmed to rt after 1 h and quenched with 5 mL of distilled H₂O. Extraction with CH₂Cl₂ (5 × 30 mL) and purification via column chromatography (100 g of silica gel, 1% MeOH/CH₂Cl₂) gave 15a (1.72 g, 80% yield) as an oil: $R_{\rm /} (5\%$ MeOH/CH₂Cl₂) = 0.77; ¹H NMR 4.05 (4 H, m), 3.85 (1 H, m), 3.56 (3 H, m), 1.86–1.16 (25 H, m), 0.83 (12 H, s), -0.01 (6 H, s); ¹³C NMR 100.0, 74.4 (d, $J_{\rm P-C}$ = 4.5 Hz), 68.4 (d, $J_{\rm P-C}$ = 6.4 Hz), 61.3 (d, $J_{\rm P-C}$ = 140.7 Hz), 18.3, 16.4 (d, $J_{\rm P-C}$ = 5.9 Hz), 14.1, -5.4; ³¹P NMR (major) 23.7 ppm; IR 2955, 2860, 1464, 1381, 1254, 1093, 1059, 1029, 961, 834 cm⁻¹; exact mass calcd for C₂₄H₅₁O₆PSi (M – CH₃)⁺ 479.2955, found 479.2927.

Diethyl (4R*,5R*,6R*)-[[4-Butyl-6-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]propyl]-2,2-dimethyl-1,3-dioxan-5yl]carbomethoxymethyl]phosphonate (16a). Phosphono ester 16a (254 mg, 82% yield based on reacted 15a) was prepared from 15a (338 mg, 0.68 mmol) as a mixture of diastereomers at the ester group, using the same procedure as for the preparation of 16s. Unreacted starting material 15a (61 mg) was isolated. 16a: $R_f(5\%)$ $MeOH/CH_2Cl_2$ = 0.79; ¹H NMR (major) 4.36 (1 H, m), 4.08 (4 H, m), 3.89 (1 H, m), 3.69 (3 H, s), 3.55 (2 H, m), 3.40 (1 H, dd, J = 22.4, 9.6 Hz), 2.29 (1 H, m), 2.11–1.11 (22 H, m), 0.83 (12 H, s), 0.01 (6 H, s), (minor) 4.08 (5 H, m), 3.89 (1 H, m), 3.68 (3 H, s), 3.55 (2 H, m), 3.16 (1 H, dd, J = 23.9, 2.4 Hz), 2.11-1.11 (23 H, m), 0.87 (12 H, s), -0.01 (6 H, s); ¹³C NMR (major) 169.2, 100.6, 69.2 (d, $J_{P-C} = 5.6$ Hz), 69.1 (d, $J_{P-C} = 9.8$ Hz), 63.2 (d, $J_{P-C} = 4.6$ Hz), 62.6 (d, $J_{P-C} = 7.8$ Hz), 62.5, 52.4, 44.9 (d, $J_{P-C} = 4.4$ Hz), 42.4 (d, $J_{P-C} = 137.8$ Hz), 36.1, 29.6, 28.3, 27.3, 25.6, 24.2, 22.7, 19.5, 18.3, 16.4 (d, $J_{P-C} = 5.6$ Hz), 16.3 (d, $J_{P-C} = 5.8$ Hz), 14.1, -5.4; ³¹P NMR (major) 23.9 ppm, (minor) 23.3 ppm; IR 2956, 2857, 1738, 1469, 1380, 1254, 1100, 1053, 1027, 963, 837 cm⁻¹; exact mass calcd for $C_{26}H_{53}O_8PSi$ (M - CH₃)⁺ 537.3010, found 537.3051.

Diethyl $(4R^*, 5R^*, 6R^*)$ -[[4-Butyl-6-(3-hydroxypropyl)-2,2-dimethyl-1,2-dioxan-5-yl]carbomethoxymethyl]phosphonate (17a). Deprotected phosphono ester (oil, 180 mg, 90% yield) was prepared from 16a (250 mg, 0.45 mmol), following the same procedure as for the preparation of the syn isomer using nBu₄NF. 17a: $R_{f}(5\% \text{ MeOH/CH}_{2}\text{Cl}_{2}) = 0.44$; ¹H NMR (major) 4.39 (1 H, m), 4.12 (4 H, m), 3.96 (1 H, m), 3.74 (3 H, s), 3.67 (2 H, t, J = 5.9 Hz), 3.20 (1 H, dd, J = 23.9, 2.5 Hz), 2.13 (1 H, m), 1.98–1.12 (22 H, m), 0.92 (3 H, t, J = 7.0 Hz), (minor) 4.16 (5 H, m), 3.98 (1 H, m), 3.73 (3 H, s), 3.61 (2 H, t, J = 6.5 Hz), 3.42 (1 H, dd, J = 22.7, 8.9 Hz), 2.35 (1 H, m), 2.18–1.05 (22 H, m), 0.91 (3 H, t, J = 7.0 Hz); ¹³C NMR (major) 169.2, 100.6, 69.2 (d, $J_{P-C} = 5.5$ Hz), 69.1 (d, $J_{P-C} = 9.9$ Hz), 63.2 (d, $J_{P-C} = 4.4$ Hz), 62.6 (d, $J_{P-C} = 7.6$ Hz), 62.5, 52.4, 44.9 (d, $J_{P-C} = 4.3$ Hz), 42.4 (d, $J_{P-C} = 137.9$ Hz), 36.1, 29.6, 28.3, 27.3, 25.6, 24.2, 22.7, 16.4 (d, $J_{P-C} = 5.5$ Hz), 16.3 (d, $J_{P-C} = 5.9$ Hz), 14.1, (minor) 170.6, 100.5, 70.6 (d, $J_{P-C} = 6.4$ Hz), 69.3 (d, $J_{P-C} = 12.7$ Hz), 62.9 (d, $J_{P-C} = 7.0$ Hz), 62.7 (d, $J_{P-C} = 7.7$ Hz), 62.5, 52.4, 45.1 (d, $J_{P-C} = 3.9$ Hz), 44.9 (d, $J_{P-C} = 132.9$ Hz), 35.8, 30.3, 28.1, 27.1, 26.3, 24.7, 22.7, 16.3 (d, $J_{P-C} = 6.2$ Hz), 14.1; ³¹P NMR (major) 23.6 ppm, (minor) 23.0 ppm; IR 3421, 2935, 1736, 1379, 1231, 1163, 1053, 1028, 966 cm⁻¹; exact mass calcd for C₂₀H₃₉O₈P (M - CH₃)⁺ 423.2146, found 423.2133.

Diethyl ($4R^*,5R^*,6R^*$)-[[4-Butyl-6-(3-propanoyl)-2,2-dimethyl-1,3-dioxan-5-yl]carbomethoxymethyl]phosphonate (18a). Aldehyde 18a (88 mg, 74% yield) was prepared from 17a (120 mg, 0.27 mmol), following the same procedures for the preparation of 18s. 18a: $R_{\rm c}$ (5% MeOH/CH₂Cl₂) = 0.72; ¹H NMR 9.75 (1 H, t, J = 1.5 Hz), 4.35 (1 H, m), 4.12 (4 H, m), 3.89 (1 H, m), 3.73 (3 H, s), 3.24 (1 H, dd, J = 24.1, 2.6 Hz), 2.49 (2 H, m), 2.18–1.09 (21 H, m), 0.91 (3 H, t, J = 6.9 Hz), (minor) 4.12 (5 H, m), 3.90 (1 H, m), 3.77 (3 H, s), 3.41 (1 H, dd, J = 22.6, 8.9 Hz), 2.18–1.09 (21 H, m), 0.91 (3 H, t, J = 6.9 Hz); ¹³C NMR 201.9, 169.1, 100.7, 69.1, 68.5 (d, $J_{P-C} = 15.7$ Hz), 63.2 (d, $J_{P-C} = 6.6$ Hz), 62.6 (d, $J_{P-C} = 7.2$ Hz), 52.5, 45.1 (d, $J_{P-C} = 4.5$ Hz), 42.5 (d, $J_{P-C} = 138.3$ Hz), 41.0, 36.1, 28.3, 25.5, 23.9, 23.3, 22.7, 16.4 (d, $J_{P-C} = 6.0$ Hz), 16.3 (d, $J_{P-C} = 6.4$ Hz), 14.2; ³¹P NMR (major) 23.6 ppm, (minor) 23.5 ppm; IR 2960, 2727, 1761, 1734, 1460, 1379, 1249, 1096, 1051, 1029, 966 cm⁻¹; exact mass calcd for C₂₀H₃₇O₈P (M - CH₃)⁺ 421.1989, found 421.1973.

Methyl (4,*R**,4a*R**,8a*R**)-4-Butyl-4a,7,8,8a-tetrahydro-2,2-dimethyl-4*H*-1,3-benzodioxin-5-carboxylate (19a). Intramolecular Wadsworth–Emmons olefination product 19a (oil, 55 mg, 85% yield) was prepared from 18a (100 mg, 0.229 mmol), following the same procedure as for the preparation of 19s. 19a: $R_f(20\% \text{ EtOAc/petroleum ether}) = 0.75$; ¹H NMR 7.02 (1 H, dd, J = 6.5, 2.4 Hz), 4.28 (1 H, m), 3.72 (3 H, s), 3.42 (1 H, td, J =8.5, 2.8 Hz), 2.79 (1 H, m), 2.39 (2 H, m), 2.15–1.11 (8 H, m), 1.37 (3 H, s), 1.29 (3 H, s), 0.89 (3 H, t, J = 7.0 Hz); ¹³C NMR 168.6, 140.8, 131.3, 99.2, 72.1, 64.3, 51.3, 41.8, 34.7, 27.8, 26.9, 25.6, 24.3, 22.5, 21.1, 14.0; IR 2956, 1723, 1641, 1433, 1379, 1258, 1217, 1190, 1092, 1042 cm⁻¹; exact mass calcd for $C_{16}H_{26}O_4$ (M - CH₃)⁺ 267.1595, found 267.1592.

(3*R**, 3*aR**, 4*R**)-3-Butyl-3a, 4, 5, 6-tetrahydro-4-hydroxy-1-(3*H*)-isobenzofuranone (4-Hydroxy-*cis*-neocnidilide) (20a). To a solution of 19a (155 mg, 0.55 mmol) in MeOH (3.5 mL) at rt was added *p*-TsOH (105 mg, 0.55 mmol). After being stirred for 2 days at rt, the reaction was quenched with 10 mL of distilled H₂O and extracted with EtO. The crude product was purified via column chromatography (silica gel, 20% Et₂O/petroleum ether) yielded 20a (105 mg, 91% yield) as a white solid: mp 80–82 °C (recrystallized from hexane); $R_{\ell}(50\%$ EtOAc/petroleum ether) = 0.54; ¹H NMR 6.93 (1 H, q, J = 3.5 Hz), 4.78 (1 H, td, J = 9.5, 4.4 Hz), 4.48 (1 H, bs), 3.15 (1 H, m), 2.42 (2 H, m), 2.05–1.15 (8 H, m), 0.91 (3 H, t, J = 7.1 Hz); ¹³C NMR 169.8, 136.2, 125.9, 82.7, 63.8, 43.3, 32.8, 29.4, 28.6, 22.5, 21.1, 13.9; IR 3425, 3031, 2962, 1744, 1681, 1463, 1337, 1250, 1106, 1090, 1044 cm⁻¹; exact mass calcd for C₁₂H₁₈O₃ (M)⁺ 210.1254, found 210.1246.

cis-Neocnidilide (2). To a solution of 20a (30 mg, 0.143 mmol) in CH₂Cl₂ (0.8 mL) at rt and under an argon atmosphere was added 1,1'-thiocarbonyldiimidazole (51 mg, 0.29 mmol). After being stirred at rt for 22 h, the reaction was diluted with CH₂Cl₂ (1.0 mL) and applied directly to a silica gel chromatography column to yield pure thiocarbonylimidazolide (36 mg, 79% yield). A solution of the thiocarbonylimidazolide (35 mg, 0.109 mmol), Bu₃SnH (59 μ L, 0.218 mmol), and AIBN (10 mg, 0.061 mmol) in 5 mL of toluene was refluxed for 2.5 h. The reaction was quenched and worked up as described for the preparation of 1. Purification by column chromatography (10% Et₂O/petroleum ether) gave pure cis-neocnidilide (16 mg, 75% yield) as an oil: $R_f(20\%$ Et-OAc/petroleum ether) = 0.74; ¹H NMR 6.84 (1 H, q, J = 3.4 Hz), 4.66 (1 H, td, J = 8.8, 2.8 Hz), 3.01 (1 H, m), 2.45-1.21 (12 H, m), 0.90 (3 H, t, J = 6.9 Hz); ¹³C NMR 170.1, 136.1, 129.7, 81.8, 39.8, 31.5, 27.5, 25.1, 22.6, 22.5, 21.2, 13.9; IR 2933, 2867, 1764, 1684, 1452, 1245, 1184, 1025 cm⁻¹; exact mass calcd for $C_{12}H_{18}O_2$ (M)⁺ 194.1305, found 194.1322.

Acknowledgment. We express our graditude to Dr. Martha Bruch for the 2D NMR spectra and help with their assignments. We would like to thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the University of Delaware Research Foundation for support of this research.

Supplementary Material Available: ¹H and ¹³C NMR spectra for all compounds (55 pages). Ordering information is given on any current masthead page.

A Reagent for Reduction of Disulfide Bonds in Proteins That Reduces **Disulfide Bonds Faster Than Does Dithiothreitol**

Rajeeva Singh and George M. Whitesides*

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Received September 21, 1990

We have synthesized a new reagent—N,N'-dimethyl-N,N'-bis(mercaptoacetyl)hydrazine (DMH)—for the reduction of disulfide bonds in proteins. DMH reduces disulfide bonds 7 times faster than does dithiothreitol (DTT) in water at pH 7. DMH reduces mixed disulfides of cysteine proteases (papain and ficin) especially rapdily (30 times faster than DTT). DMH ($\epsilon^{\circ} = -0.300$ V) reduces noncyclic disulfides completely, although it is less strongly reducing than DTT ($\epsilon^{\circ} = -0.356$ V).

Introduction

This report describes the synthesis of N,N'-dimethyl-N,N'-bis(mercaptoacetyl)hydrazine (DMH) and the use of this reagent for reduction of disulfide bonds in water at pH \sim 7. Disulfide-reducing reagents are used in biochemistry for a number of purposes, especially in reduction of cystine groups in proteins and in maintaining essential thiol groups in reduced state.¹⁻³ The requirements for an optimal reducing reagent for cystine groups in proteins are as follows: (i) a reduction potential higher than the cystine group(s) to be reduced; (ii) a pK_s for thiol groups close to the pH of the solution in which the protein is to be manipulated; (iii) convenient physical properties (a crystalline solid with low odor and adequate solubility in water).^{4,5}

Thiol-disulfide interchange involves the nucleophilic attack of thiolate anion along the S-S bond axis of the disulfide.⁵⁻⁹ The pK_a of simple alkanethiols in water is \sim 9-10; for these thiols, only a small fraction (1-0.1%) is present as thiolate at pH 7. The apparent rate of thioldisulfide interchange is maximum when the pK_a of the thiol is close to the pH of the solution.^{5,6} α, ω -Dithiols are more strongly reducing than monothiols, because the intramolecular reaction (the second step in eq 1) is faster

than the corresponding intermolecular reaction for monothiols. Among α, ω -dithiols, the dithiols that form cyclic

- Jocelyn, P. C. Methods Enzymol. 1987, 143, 246-256.
 Gilbert, H. F. Adv. Enzymol. 1990, 63, 69-172.
- (3) Jocelyn, P. C. Biochemistry of the SH Group; Academic: London, 1972. Huxtable, R. J. Biochemistry of Sulfur, Plenum: New York, 1986.
 (4) Cleland, W. W. Biochemistry 1964, 3, 480–482.
 (5) Whitesides, G. M.; Lilburn, J. E.; Szajewski, R. P. J. Org. Chem.
- 1977, 42, 332-338
- (6) Szajewski, R. P.; Whitesides, G. M. J. Am. Chem. Soc. 1980, 102, 2011-2026.
- (7) Shaked, Z.; Szajewski, R. P.; Whitesides, G. M. Biochemistry 1980, 19, 4156-4166.
- (8) Singh, R.; Whitesides, G. M. J. Am. Chem. Soc. 1990, 112, 1190-1197. Singh, R.; Whitesides, G. M. J. Am. Chem. Soc. 1990, 112, 6304 - 6309
- (9) Houk, J.; Singh, R.; Whitesides, G. M. Methods Enzymol. 1987, 143, 129-140.

six-membered disulfide are the most reducing, reflecting a balance between the thermodynamic stability of the CSSC dihedral angle and the entropy of formation of the ring from the acyclic reduced form.^{6,10,11}

Dithiothreitol (DTT)⁴ and β -mercaptoethanol (ME) are the favorite disulfide-reducing reagents in biochemistry.¹ DTT reduces noncyclic disulfides to thiols completely, and intermediate mixed disulfides are absent in any significant concentration (eq 1).⁴ DTT has, however, some short-

comings: the value of its first thiol pK_a is 9.2,⁶ and it is therefore relatively slow as a reducing reagent at pH \sim 7. It is expensive.¹² Its ability to chelate metals and generate H_2O_2 on exposure to air can cause problems.¹³ Because mercaptoethanol is inexpensive, it can be used in large amounts (0.1-0.7 M) in biochemical manipulations (for example, in conjunction with SDS gel electrophoresis).¹ The pK_a of mercaptoethanol is 9.6.⁶ The disadvantages of mercaptoethanol are that it is a weak reducing reagent and is foul-smelling. Because it is weakly reducing, it often generates complex reaction mixtures containing mixed disulfides.6

- (11) Burns, J. A.; Whitesides, G. M. J. Am. Chem. Soc. 1990, 112, 6296-6303.
- (12) The cost of dithiothreitol (DTT) is \$10/g (FW 154).

⁽¹⁰⁾ Houk, J.; Whitesides, G. M. J. Am. Chem. Soc. 1987, 109, 6825 6836.

⁽¹³⁾ Trotta, P. P.; Pinkus, L. M.; Meister, A. J. Biol. Chem. 1974, 249, 1915-1921. Costa, M.; Pecci, L.; Pensa, B.; Cannella, C. Biochem. Biophys. Res. Commun. 1977, 78, 596-603.